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Abstract
A mathematical model incorporating
weed growth, dispersal and control is
developed to represent the spread of a
weed from a point source in cropping
fields. This model allows the simula-
tion of theoretical rates of weed spread
and the examination of spatial distribu-
tion of a new weed infestation on a large
regional scale. The model is cellular in
structure, dividing space into discrete
units. The starting point is with an ini-
tial population at a point source, such as
might arise with the arrival of a newly
invading species, an emerging sleeper
weed or the first herbicide-resistant
plants in an arable field. The location of
this point source is set in the centre of the
hypothetical grid field. From this starting
point, the spread of weeds is modelled at
annual intervals. Risk is a critical issue
to this modelling; the weed spread func-
tions being stochastic (with different
probability distributions incorporating
rare events in the dispersal process), and
the weed control effort decision being
probabilistic. Six case study weed spread
simulations were undertaken to demon-
strate the model’s applicability to dif-
ferent weed incursions with differences
in weed biology, rates of spread and to
demonstrate the effects of weed search
and control effort. The simulated model
results are discussed in relation to a case
study of awnless barnyard grass (Echi-
nochloa colona) spread and its control in
northern New South Wales, Australia.
Keywords: Weed population growth,
weed dispersal, spread modelling.

Introduction

Invasions by non-indigenous plant species
pose serious economic threats to Austral-
ian agricultural industries (Sinden et al.
2004). Effective quarantine strategies are
the key to managing the risk of exotic in-
vasive species. However, there is always a
risk of new invasions due to international
trade and travel by individuals. Moreo-
ver, there is also the threat of previously
unidentified ‘sleeper weeds’ or herbicide
resistant plants emerging in cropping ar-
eas. Consequently, it is important to have
well developed strategies for dealing with

new incursions as they occur, rather than
relying on a reactive approach to man-
aging incursions. When a new invader
is identified a rapid response is critical,
particularly if the invasive species has the
ability to spread rapidly. An early decision
is required whether to eradicate or contain
the infestation, or leave it to landholders to
manage. The first step in developing these
strategies is the realistic modelling of the
spread of a weed. The ability of a weed to
spread within a cropping area has signifi-
cant implications for its management.

The current cost of weeds in Austral-
ian cropping systems is around $1.5 billion
per annum (Sinden et al. 2004) which rep-
resents 15% of the 2003-04 gross value of
the Australian grains industry. This value
ignores the potential future costs that may
be imposed from new weed incursions.
In general, early action on invasive plants
can give significantly greater economic re-
sults than waiting for the weed problem
to develop into one of significance before
taking action. Once an infestation is well
established the policy and management
options may become limited, and the
economic returns from strategies such as
eradication may then be low or negative.
Consequently, an efficient allocation of
capital and scarce resources may be to deal
quickly and decisively with new weed in-
cursions in preference to managing exist-
ing large scale infestations.

Mathematical models of plant popula-
tion dispersal from a point source have
established that the rate of spread will de-
pend on 1) the species potential for popula-
tion increase in the habitats being invaded
and 2) its dispersal characteristics (Okubo
1980). Seed production and probabilities
of survival at different stages in the life
cycle of several annual weeds have been
thoroughly documented and their relative
importance to population increase is un-
derstood (Cousens and Mortimer 1995).
In contrast, dispersal of weeds in arable
fields has seldom been studied and gen-
eralizations about dispersal are therefore
rare (Woolcock and Cousens 2000).

Higgins and Richardson (1996) pro-
vided a comprehensive introduction to
the topic, reviewing the potential model-
ling tools by categorizing models of plant

spread as either simple-demographic, spa-
tial-phenomenological or spatial-mecha-
nistic, based on the model’s data inputs
and outputs.

Demographic models aim to predict the
future number of individuals in a popula-
tion, making assumptions about the na-
ture of population growth and by estimat-
ing demographic parameters regarded as
being important in determining popula-
tion dynamics. Such models include the
exponential, logistic and logistic-differ-
ence models that assume constant envi-
ronmental conditions and no variance in
the behaviour of the population as well
as stochastic models that account for vari-
ability by incorporating random variation
into model parameters. In reviewing the
demographic features of invasive organ-
isms, Crawley (1986) concluded that sim-
ple demographic models are unlikely to be
useful since there is no clear demographic
profile of a successful invader. Accord-
ing to Higgins and Richardson (1996, p.
255), ‘many modifications to demographic
models can be found; these are usually ap-
plied when the underlying assumptions of
the model are no longer satisfactory’.

Since invaded ecosystems have differ-
ent attributes to uninvaded ecosystems,
the area of land occupied and the rate of
this occupation are said to be the key di-
mensions of an invasion. This observation
has led to the development of a number of
models aimed at the prediction of the area
invaded. Higgins and Richardson (1996)
referred these spatial models as phenom-
enological models because they invoke
no ecological mechanism as a means to
prediction. These models therefore as-
sume that plant-environment interactions
are best described by empirically derived
constants. Spatial-phenomenological
models include regression models, geo-
metrical models as well as Markov mod-
els which use the tools of matrix algebra
to formulate discrete-space and discrete-
time variables. Since these models do not
invoke any ecological mechanism in the
prediction of plant invasive spread, they
have the advantage that they can forecast
future events without making any eco-
logical assumptions. This is particularly
useful when the ecological mechanisms
are unknown and when the past can be
confidently used to predict the future. As
noted by Higgins and Richardson (1996, p.
257), ‘The disadvantages of the phenom-
enological models are that one’s under-
standing of ecological invasions and other
ecological processes is not enhanced, the
results cannot be applied to other invasion
scenarios, and the techniques cannot be
applied without historical spread records’.

Spatial-mechanistic models, in con-
trast to the phenomenological models, are
based on independent estimates of eco-
logical parameters. Since these ecological
parameters represent some ecological
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processes, the predictions are a function
of ecological interactions and the model’s
assumptions. According to Higgins and
Richardson (1996, p. 257), ‘these mechanis-
tic spread models thus invoke ecological
knowledge of the nature and determinants
of invasions in the prediction of plant
spread’. Three sub-categories of spatial-
mechanistic models have been discussed
in this group namely; reaction-diffusion
models, population dynamic metapopula-
tion models and individual-based cellular
automata models. The reaction-diffusion
models use the formulation of partial dif-
ferential equations which allows the mod-
elling of population density in both space
and time. Despite the moderate success
of reaction-diffusion models in describ-
ing animal invasions, few plant invasion
models have used the reaction-diffusion
approach. Also, many criticisms have
been levelled at the simplifying assump-
tions that reaction-diffusion models make
(Higgins and Richardson 1996).
Metapopulation biology is concerned
with the dynamic consequences of migra-
tion among local populations and there-
fore, metapopulation models have been
referred as a system of models that can
be used to predict the movement patterns
of individuals, the dynamics of species,
and the distribution patterns in multispe-
cies communities in real fragmented land-
scapes (Hanski 1998). Auld and Coote
(1980, 1990) developed a metapopula-
tion model of plant spread to consider
the spread of a wind-dispersed annual or
perennial species in a two-dimensional
landscape in Australia. The landscape is
divided into a grid of neighbouring sites,
each of which supports exponential popu-
lation growth. A proportion of each local
population was set to disperse to neigh-
bouring sites, with sites differing in their
susceptibility to colonization. The model
was successfully applied in the prediction
of the spread of Nassella trichotoma (Auld
and Coote 1981) and Avena fatua in eastern
Australia (Auld and Coote 1990). Metap-
opulation models view landscapes as net-
works of idealized habitat patches (frag-
ments) in which species occur as discrete
local populations connected by migration.
When this patch structure does not cor-
respond to patterns of environmental het-
erogeneity experienced by the modelled
population, as commented by Higgins and
Richardson (1996, p. 259), ‘it follows that
individual-based cellular automata mod-
els are appropriate in situations where no
ecological motivation for the delineation
of local populations exists, when the envi-
ronmental conditions experienced by each
individual plant is important, or when the
presence of a single plant can influence
invasion patterns’. Recently, there has
been weed process-based spatio-temporal
modelling work done for the Austral-
ian landscapes (Diggle et al. 2002, 2003,

Monjardino et al. 2004). These studies have
simulated the spread of organisms includ-
ing the movement of seed in Australian
cropping systems.

Careful consideration of the ecology of
the invasion, and a proper understanding
of the processes which determine the dy-
namics of the invasion are important in
selecting which plant spread modelling
approach is appropriate for a given inva-
sion. As reported by Higgins et al. (2001),
parameterization of process-based spa-
tially explicit models is often challenging
and time consuming. Also, these models
are seldom validated which makes their
predictive value in applied contexts un-
certain. As Higgins et al. (2001, p. 572)
commented, ‘Few contemporary invasion
scenarios have been validated; Auld and
Coote’s (1990) INVADE model is the only
spread model that we are aware of that has
been validated using data on contempo-
rary invasions’. Moreover, process-based
spatially explicit demographic modelling
on a large regional scale can be computa-
tionally very intensive.

The aim of this paper is to present a
flexible modelling approach that can in-
corporate the key processes that deter-
mine the spatial population dynamics of
an invading plant species in a large area
cropping system. The approach falls into
the spatial-mechanistic categorization, as
it is based on independent estimates of
ecological parameters and neither the in-
vader nor the environmental and ecologi-
cal mechanisms of the receiving environ-
ment is known in this large area system. A
framework such as described in this paper
has considerable value to the development
of more effective alien plant management
strategies as it is amenable for inclusion
in an economic framework to assess the
benefits and costs of alternative actions to
a new invasion.

Materials and methods

A spatially explicit framework was devel-
oped for regional-level modelling of alien
plant spread in arable fields. A raster-
based approach was used to represent
a large region as a grid of neighbouring
cells. The model uses an annual time step
and a two-dimensional grid of sites rep-
resenting space. The mathematical model
follows three stages; population growth,
dispersal processes to represent spread of
a weed from a point source and the weed
control effort.

The space (the region at risk of inva-
sion) is divided into an n x m array (grid)
of rectangular cells of equal size. The grid
size can be readily changed to suit the
representation of a particular case study
region. The starting point is with an initial
population at a point source, such as might
arise with the arrival of a newly invading
species, a re-emerging sleeper weed or
the first herbicide-resistant plants in the

arable field. The location of this point
source is set in the centre of the hypotheti-
cal grid field. A model was developed to
simulate weed population density for each
cell of the grid field at annual intervals.

Population growth

The first part of the model comprises a
population growth sub-model which de-
scribes the weed population growth based
on the logistic equation:

ax _ rX[l —KJ (1)
dt K

where r is the intrinsic growth rate, X =
X(t) denotes the size of the weed popula-
tion at time ¢, and K is the environmental
carrying capacity or saturation level. Such
models have had wide application in a va-
riety of biological resource stock problems
(Clark 1990). This equation is modified to
obtain the following discrete version of the
logistic growth relationship:

X(t+1):X(t)+rX(t)[ —%J )

where X(t) and X(t + 1) are the weed pop-
ulations expressed in percentage infesta-
tions (corresponds to the percentage of a
grid cell occupied by the weed) at time ¢
and t + 1 respectively and K = 100 denotes
the maximum carrying capacity (100% in-
festation). Here, and in the following de-
terminations of weed populations within a
cell X(t) at time ¢ is restricted to the range
[0, 100]. That is, X(t) set equal min{100,
max{0, X(¢)}}.

Using Equation (2), weed population
size X(t) can be computed for different val-
ues of the intrinsic growth rate parameter
r and X(0). Conversely, this equation can
be used to determine an r value for a par-
ticular case study weed spread scenario in
the field. Depending on the initial size of
the invasion and number of years a weed
may take to reach a 95% spread level in
one grid cell, the model is set to compute
the corresponding r parameter value. It
is expected that the required information
‘how many years it takes to reach 95%
infestation level in one grid cell’ can be
obtained for a particular case study weed
spread scenario. This percentage level is
considered as more plausible at field prac-
titioner level.

To denote the infestation level post
growth but prior to dispersal, for each cell
across the n x m array Equation (2) can be
written as:

X
XP(E+1) = X () + 1 (DX (t)(l _#E)t)]

3)
where ij denotes the cell at " row and j®
column of the hypothetical grid field with
the constraint that X’,?]f’(t) € [0, 100]. Here



7;(t) is set up to allow dependence on both
cell and time. Replacing r;(t) with r would
have the growth parameter independent
of both space and time. The superscript pd
denotes “prior to dispersal’.

When modelling X ’j]f*(t) above we re-
strict percentage intensity to the nearest
decimal place. Hence the unit of infesta-
tion is 0.1% and each cell can be consid-
ered to have an integer number of infesta-
tion units between 0 and 1000 inclusive.

Dispersal

The second part of the model comprises a
dispersal process sub-model. In addition
to growth within each time interval, weed
dispersal takes place with a proportion
P’;’” of the weed intensity in the (i, j)™ cell
dispersed to the (7', j)* cell. Hence, after
growth and dispersal the weed intensity
in the (i, /) cell is given by:

XI(t+1) = ZP” X P (£+1) )

where superscript pc denotes “prior to con-
trol’. As already noted, the X!(t) values
are restricted to [0, 100]. Incorporating
Equation (3) we get:

X0 =Y P Xy 0+ (0, 0 1=
1 i,/‘ i 1] 1] 1] 100

()

Here we see that the model for weed
intensity at time ¢ + 1 relates to the growth
since time t and then dispersal.

When modelling dispersal, particular
focus is given to the term PJX" (1), this
being the infestation in the (i’, )™ cell
dispersed to the (i, /) cell. In modelling
this, it is essential that the model captures
the possibility of long distance dispersal.
This represents rare events in the dispersal
process, often less than 0.1% of the total
infestation, whereby units are moved unu-
sually long distances, e.g. by vehicle. One
approach to modelling such dispersal is to
use aradial Cauchy distribution. A related
approach has been used in Diggle et al.
(2002), to model dispersal of Anthracnose
spores. The problem with this approach
is the high computational effort required
when undertaking simulations. Hence, in
this paper we use an alternative dispersal
mechanism which retains the possibility
of rare long distance dispersal.

We first assume that each infestation
unit is independently distributed of each
other, and decompose dispersal from each
cell into two components, being short and
long distance dispersal components. The
probability that a unit is dispersed short
or long distance is denoted by p,, and p, =
(1 - p,y), respectively.

For modelling short distance dispersal
we use the approach of Auld and Coote
(1990). They define distribution of new
plants as determined by the proportion of
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these that can move into pre-determined
grid units away from the spreading source
on a rectangular grid. In line with this ap-
proach, we set up the short distance condi-
tional probability distribution, letting each
unit dispersed locally to have a probability
equal to p,, py, ... p, of being dispersed to
a‘ring’ 0, 1, ..., w cells away respectively
from the dispersing cell. Within a ring
each cell is equally likely to be selected.
For this purpose a matrix (DM) of short
distance dispersal probabilities is estab-
lished. Based on this matrix, we simulate
the contribution from the dispersing cell
to infestation into the neighbouring cells,
that is, the sub-grid of cells receiving short
distance dispersed units. Here the simula-
tion is based on the multinomial distribu-
tion with parameters nsd; (the number of
infestation units in the cell dispersed short
distance) and probabilities as given in DM.
The variable nsd;itselfis abinomial variate,
anomml(lOX”d(t) Ps)- It is assumed that
units dispersed short distance and falling
outside the full n x m grid are lost to the
system.

The remaining units, (10X%(t) — nsd;),
are distributed long dlstance Each long
distance dispersed unit is then assigned
at random to one of the ‘long distance’
cells of the grid, these being those cells of
the grid that are the complement to the
short distance cells. The probability of a
unit being assigned to any particular long
distance cell is set inversely proportional
to the squared distance the cell is from
the dispersing cell. These probabilities ap-
proximate the probabilities for a Cauchy
distribution in the tails and hence the long
distance dispersal approximates a radial
Cauchy distribution.

In the example to be considered later,
DM, the matrix of short distance condi-
tional probabilities is established with a
maximum number of rings equal to four
so that a maximum of 81 cells (9 x 9 sub
grid) receive, from any cell, weed units
dispersed short distance. It is also as-
sumed that, on average, of the units dis-
persed short distance;

* 95% of infestation units remain within
the dispersing cell itself,

e 2% move to the eight neighbouring
cells,

e 1.5% move to the next 16 neighbouring
cells,

e 1% move to the next 24 neighbouring
cells, and

e 0.5% move to the last 32 neighbouring
cells away from the dispersing middle
cell.

These parameters can be readily changed

to suit for the requirements of a particu-

lar case study weed. However, it should

be noted that dispersal of weeds in arable

fields has rarely been studied. A rule of

thumb developed in a summary of dis-

persal data by Cousens and Mortimer

(1995) and later adopted by Woolcock

and Cousens (2000) is that in species with-
out clear dispersal adaptations, half the
seeds are distributed within a distance of
half the height of the parent plant. While
most seeds are likely to be dispersed short
distances by passive means, it is possible
for a small proportion of seeds to disperse
considerable distances due to rare events
such as gale force winds, birds, farm ma-
chinery, etc. Some evidence of these rare
events is presented in field experiments
by Auld (1988) in which he found a sin-
gle Avena fatua plant established at 14 m
from the nearest source in the second year.
Mimosa pigra spread at 76 m y! in north-
ern Australia (Lonsdale 1993). Parthenium
hysterophorus (parthenium weed) long dis-
tance spread is mostly by produce, vehi-
cles and farm machinery but it can also be
spread by flooding and by animals. This
was first discovered in Queensland in
1955. In a short time it spread from isolat-
ed outbreaks to establish core infestations
across the Central Highlands of Queens-
land and into New South Wales and the
Northern Territory (CRC for Australian
Weed Management 2003).

Rare long-distance dispersal events are
critically important in invasions and plant
migration (Higgins et al. 1996, Higgins and
Richardson 1999). The conclusions drawn
by Higgins and Richardson (1999) are that
data on rare long-distance dispersal will
remain (by definition) hard to come by,
and that the rare long-distance dispersal
component of the mixture model can, if
sufficiently rare, be estimated independ-
ently of the local dispersal components.
In their analysis, they suggest that rela-
tively large errors in estimating the long
distance dispersal component are unlikely
to strongly influence the predicted spread
rate. Hence, it may be that accurate char-
acterization of the long distance disper-
sal component is not as important as its
identification. Accordingly, the spread
modelling as discussed in this paper has
incorporated both short and long distance
weed spread. As shown in Figure 1, the
new weed infestation starts in the mid-
dle of the grid field and spreads along the
two dimensional fields (both length and
breadth). Much of the spread takes place
from the short distance dispersal while a
much lower level of spread occurs from
the rare long distance dispersal of this
mixed distribution spread model.

Figure 2 illustrates the movement of the
spreading weed populations on the grid
space for a possible set of parameters. The
spreading population moves along two
dimensional fields as a “wave’ of popula-
tion density. The weed ‘search and control
effort’ is incorporated into this model as
described in the next section.

Control
Cacho et al. (2006) modelled detection
curves representing the proportion of
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Length

Short-distance dispersal
— with higher probability

Long-distance dispersal

with a much lower probability
to accommodate the rare
events in the dispersal process

Breadth

Figure 1. Representation of the mixed distribution of weed dispersal
adopted in the model. Note: Bivariate distribution over a rectangular field

having specified length and breadth

After 10 years

After 15 years

100 -
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60 .

Length

40

20

40
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Figure 2. Spreading weed populations on the grid space.
Note: Parameterization given in Table 1 with r value taken as 1.35.

targets detected (pyeeq), OF equivalently the
probability of detecting a single target, as
a function of coverage (c) defined as the
ratio of the area actually searched over the
total area of the invasion:

c=SxTxR
A

(6)

where A is the total area (km?) at risk of
invasion, S is the speed of search (km h?),
T is time spent searching (hours) and R is
the effective sweep width (km). T is the
product of two components namely; the
number of man days employed on search
and control (0 to 400 man days y!) and the
number of hours of search time spent per
man day (7 h day ™). R is a measure of the
detection capability of the searchers, tak-
ing into account target characteristics and
environmental conditions and is referred
to as the detectability of the weed. The nu-
merator of equation represents the area
searched (km?) as the product of search

effort in terms of distance traversed (S x
T) times the detectability of the weed (R).
Under random searching there is no
pattern to the search process, some areas
will be searched repeatedly while others
may not be searched at all. This provides
a conservative estimate of search effective-
ness. As commented by Cacho et al. (2006),
random searching would be expected to
produce the least detections unless there
were systematic biases in the search proc-
ess. The proportion of targets detected
(Paetecy) for random sweeping is given by:
Pdetect = 1-e~ (7)
Cacho et al. (2006) reported a pyeq Value
of approximately 0.63 under the random
detection function at ¢ = 1.0 coverage.
They illustrated how search time affects
coverage considering a plant/ environ-
ment combination with S = 1000 m h™!
and R = 20 m; thus SR = 20 000 m? h,

implying that 2 ha can be searched in
one hour, or that a coverage of 2.0 can be
achieved with a search time of 1 h on an
one hectare plot.

Once detection is made, it is assumed
that an attempt is made to kill the weeds
found, subject to the effectiveness of the
control method used. The mortality caused
by the search and control effort (D) is:

D = pyetect Prat (8)
where p, is the probability that a target
organism will die each time a control is
applied.

Search effort When a large area cropping
system is considered, localized search for
a new invader would begin when a cer-
tain threshold level is reached in terms
of visible detection of weed densities in
those locations. While it is not rational to
equally distribute the search and control
effort across the large region, the model-
ling becomes complex when smaller sized
sub grids (the number and their sizes etc.)
have to be defined to focus this control
effort. Previously Jayasuriya and Jones
(2008) and Jayasuriya et al. (2008a) adopted
amethod to allocate search and control ef-
fort into one sub grid in the full grid space
assuming a new invasion is discovered in
a particular locality of a very large region.
Consistent with Jayasuriya et al. (2008b),
in this paper we have adopted a method
to allocate search and control effort pro-
portionately into each grid cell based on
the weed density in those cells each year.
This approach implicitly assumes that in-
dividual farmers in the large region are ac-
curate in observing the weed densities and
thus focus their search and control effort
on those locations. Therefore T, for each (i,
j)* cell across the n x m array at time t, is
set proportional to Xf}“(t) so that:

LT(H)=T.

Re-infestation from the soil seed bank
Although a visible infestation can be killed
after applying ‘search and control effort’ as
shown in Equation (8), there is always the
possibility of re-infestation occurring from
the soil seed bank. Process-based demo-
graphic modelling such as Woolcock and
Cousens (2000) has incorporated effective
germination rates separately for new and
old seeds in the seed bank. Literature cita-
tions on the seed germination rates vary
for different weeds ranging from 25-50%
for new and old seeds respectively in the
case of Raphanus raphanistrum (wild rad-
ish), while just 2% of Orobanche ramosa
(branched broomrape) seeds may germi-
nate in field conditions due to the require-
ment of host plants to be present. Due
to the existing complexity of the spatial
modelling framework, weed demography
was not included into the regional level



spread model as it would add consider-
ably to the computational burden. Instead,
a more simplistic approach of incorporat-
ing weed re-infestation from the seed bank
was used where the mortality caused by
the search and control effort (D) was ad-
justed to accommodate the re-infestation
of weeds from the soil seed bank:

M = D(1-6) )

where M is mortality caused by the search
and control effort after adjusting for the
seed bank re-infestation rate (6) where 0
€0, 1].

To include dependence of M on cell (i, f)
across the n x m array and on time t, Equa-
tion (9) can be written as:

Mz‘j(t) = Dij(t) [1_6ij(t)] (10)

Here 6,(t) is set up to allow dependence
on both cell and time. Replacing 6,(t) with
0(t) would have the re-infestation param-
eter independent of space. In resembling
the overall weed control effort in the ar-
able field, this M(t) is then applied to the
Equation (5) to obtain:

X(t+1) = Xf}“(t-kl) [1- M (1)] (11)
Parameterization for case study
simulations
As explained previously, Equation (2) is
used to determine different values of the
intrinsic growth rate parameter r. This
value was computed for six hypothetical
weed spread scenarios, being 4, 7, 10, 15,
20 and 25 years to reach a 95% infestation
level, starting with a 0.1% infestation in a
1km? area (individual cell size in the grid).

The dispersal probabilities considered
in the example simulation are p,, = 0.999
and p,, = 0.001, with the conditional short
distance dispersal probabilities to neigh-
bouring ‘rings’, up to the fourth ring, i.e.
Por P ---» Ps set equal 0.95, 0.02, 0.015,
0.01 and 0.005 respectively. These have
already been mentioned. For the remain-
ing parameters in the model we include
a stochastic component to capture tempo-
ral and possible spatial variation. In each
case, the sampling distribution for the pa-
rameter is taken as a triangular distribu-
tion having mode at the most likely value
for the parameter and the minimum and
maximum of the distribution correspond-
ing to the parameter’s possible range. In
each case the corresponding distribution
is denoted by Tri(min, mode, max).

For parameters p,y and 6, these are
assumed constant across the grid within
each year but across years are assumed
independently sampled from Tri(0.9, 0.95,
0.97) and Tri(0.2, 0.25, 0.3) respectively.
Here the variation in these parameters
aims to capture seasonal variation. For pa-
rameters S (km h™!) and R (km) it is expect-
ed that these will vary spatially as well as
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temporally. Hence these parameters are
sampled for each grid cell at each time in-
dependently from Tri(0.95, 1.0, 1.05) and
Tri(0.018, 0.02, 0.021) respectively. These
settings are summarized in Table 1. Time
spent searching, as denoted by T in Equa-
tion (6), was the decision variable on the
weed control strategy and is expressed
in ‘man days’ assuming seven hours of
search and control time spent per man day
in the field.

A case study of awnless barnyard
grass spread in Northern New
South Wales

Awnless barnyard grass (Echinochloa colo-
na), an annual species, grows rapidly dur-
ing spring to autumn period. Flowering
occurs during summer and autumn, par-
ticularly in response to rain. Emergence
occurs mainly during October to January

Table 1. Parameters used in the model.

in southern Queensland. The weed germi-
nates in a number of cohorts in response to
rain of at least 90 mm. Three major flushes
of emergence have been identified during
late spring and early summer. Although
E. colona is an annual, it may be vegeta-
tively propagated by production of new
roots and shoots at the nodes when it is
in a stage of prostrate growth (Holm et
al. 1977).

The production of a large number of
easily dispersed seeds and the ability
to flower under a wide range of photo-
periods contributes to the success of barn-
yard grass. The ability to grow in flooded
fields, in waterways, and on levees has
enabled several species of barnyard grass
to spread over much of the older rice
cropping areas in the Murrumbidgee and
Murray Valleys of New South Wales. On
older cropping land, the weed density is

Variable Parameter Value
Total area at risk of invasion (km?) A grid of 100 x 100 cells
=10 000
Intrinsic growth rate when Y years taken to reach 7
95% infestation in 1 km? grid cell:
Y =25 0.44
Y =20 0.57
Y=15 0.80
Y=10 1.35
Y=7 2.38
Y=4 9.19
Probability of long distance dispersal Pu 0.001
Conditional short distance dispersal probabilities:
probability of dispersal:
within the dispersing cell itself 0.950
among the 8 cells lying around one cell away 0.020
among the 16 cells lying around two cells away 0.015
among the 24 cells lying around three cells away 0.010
among the 32 cells lying around four cells away 0.005
Speed of search (km h") S
minimum value 0.95
mode value 1.00
maximum value 1.05
Effective sweep width (km) R
minimum value 0.018
mode value 0.020
maximum value 0.021
Probability of kill each time control is applied Prin
minimum value 0.90
mode value 0.95
maximum value 0.97
Re-infestation rate from the soil seed bank 0
minimum value 0.20
mode value 0.25
maximum value 0.30
Threshold level of infestation (%) 1.0
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generally increased by cultivation, possi-
bly because buried seed is brought close
to the soil surface. E. colona hosts a number
of diseases, being an alternate host for the
viruses which produce mosaic diseases
in rice and sugarcane (Holm et al. 1977).
Barnyard grass interferes with harvesting
of row crops and increases labour costs;
the crop must be separated from the weed
clumps.

One plant may produce up to 42 000
seeds. The seeds are readily spread by
irrigation or river water and often enter
rice fields with crop seeds or transplants.
Because it resembles rice in the seedling
stage, it is sometimes transplanted by ac-
cident into the fields with the rice crop.
Seeds may also be transferred between
fields on farm machinery and on mud
on the feet, fur, feathers and skin of ro-
dents, birds and larger animals including
humans (Holm et al. 1977). In Australia
it is suspected that wild ducks may have
been important in the initial distribution
of the weed (CRC for Australian Weed
Management 2006). Cultivation buries the
seed which will survive for many years
and stock help spread seeds from infested
paddocks. Wu et al. (2004) indicate that
seeds buried deep in the soil are able to
persist, providing a potential seed source
of further infestation.

Herbicides are the major means of con-
trolling E. colona in crops, but few chemi-
cals are available for its economic control
during fallow periods. Glyphosate is used
for fallow weed control in the north-east
grain region and elsewhere as it has broad
spectrum of weed control, is non-residual,
and non-toxic to animals. Despite repeat-
ed warnings of the threat of glyphosate
resistance developing in several signifi-
cant weed species, the herbicide has been
unwisely relied upon as the only weed
control in fallow. The recent discovery of
glyphosate resistance in E. colona in New
South Wales has left growers with few op-
tions as there is already resistance to her-
bicide mode-of-action groups A, B and C
overseas and one population in northern
New South Wales resistant to atrazine —
group C (NSW DPI 2007). Implementing
control options other than glyphosate is
seen as an insurance policy that will de-
lay or prevent the onset of glyphosate
resistance. As the weed has a long-lived
seedbank, one season of poor control can
set paddocks up for many years of high
weed numbers and difficult control, so it is
important to prevent the seed-set. Spray-
ing with a high rate of paraquat or Spray.
Seed (a mixture of paraquat and diquat)
— a second application might be needed if
the plants are large — and controlling new
germinations until the end of the season is
recommended. A new control regime will
be required the following summer in all
paddocks to prevent resistance develop-
ing. To obtain total control a minimum of

two control tactics must be used on each
flush of awnless barnyard grass (NSW DPI
2007). In the USA, rotations with rice, soy-
beans, and/or oats have been effective in
reducing the levels of infestation (Holm
et al. 1977).

After discussions with the Techni-
cal Specialist (weeds) and the Technical
Officer (weeds) at the Tamworth Ag-
ricultural Institute of New South Wales
Department of Primary Industries, we
concurred that the first two hypotheti-
cal case study spread scenarios in Table
1, being 25 and 20 years to reach a 95%
infestation level, starting with a 0.1% in-
festation in a 1 km? area (individual cell
size in the grid), would resemble the case
of E. colona spread in the northern New
South Wales. It was also suggested that
this varies depending on: type of cultiva-
tion, time taken for cultivation (to prepare
wheat crop), slope of ground, fertility of
the paddock, occurrence of heavy rainfall
events, whether the area is grazed (seeds
will move on mud and in the gut of the
animals) and presence of ants etc.

Results and discussion
Dividing space into discrete units (grid of
100 x 100 cells equivalent to 10 000 km?),
the spread model was run for 50 years
starting with a 10% infestation (100 units
of 0.1% infestations) dispersing from the
central cell of the grid space. Six case study
weed spread scenarios were run by vary-
ing the intrinsic growth rate parameter
r. The model counts the number of grid
cells that have weed infestations above a
threshold level of 1% and reports the pro-
portion of grid cells infested beyond this
threshold for every year of the model runs.
This is termed the ‘infestation level” and is
presented in Figure 3 for the initial deci-
sion of no search and control effort.

Figure 3 shows the weed spread (under
the four highest r parameter values in Ta-
ble 1) in the entire cropping region of 10
000 km? defined as the area at risk from a
new invasion. With a r parameter of 0.80
(where it takes 15 years to reach 95% infes-
tation level in a 1 km? area starting with a
0.1% infestation), the whole region reaches
100% infestation by year 34 without any
search and control effort. With higher val-
ues for the r parameter the region reaches
full infestation level rapidly, indicating
that this would occur by the year 26, 20
and 12 for the r parameter values of 1.35,
2.38 and 9.19 respectively. The variability
of each curve is shown in marked lines
indicating the 5th and 95th percentiles
from 100 simulation runs. This variability
entails the stochastic nature of the spread
functions with different probability distri-
butions incorporating rare events in the
dispersal process.

The six simulations shown in Figure 4
(a) to (f) indicate the relationship between
the weed intrinsic growth rate r, its spread

in the field and the search and control ef-
fort required in the total cropping region
of 10 000 km? defined as the area at risk
of a new invasion. In the first case study
simulation (Figure 4a) with an r parameter
of 0.44 (where it takes 25 years to reach
95% infestation level in a 1 km? area start-
ing with a 0.1% infestation), the region
reaches 30% infestation by year 50 with-
out any search and control effort. With 100
man days per annum input in search and
control effort it seems possible to maintain
near zero infestation level in the region
for the full 50 year period (coincides with
horizontal axis of the graph).

In the second case study simulation
(Figure 4b) with an r parameter of 0.57
(where it takes 20 years to reach 95% infes-
tation level in a 1 km? area starting with a
0.1% infestation), the whole region reaches
100% infestation by year 43 without any
search and control effort. With increasing
control effort, the infestation curves are
pushed to the right thus slowing the weed
population spread rate in the region. A 100
man days per annum input in search and
control effort would not be adequate as
the infestation level starts increasing after
30 years. With around 400 man days per
annum input in search and control effort
it seems possible to maintain near zero in-
festation level in the region for the full 50
year period (coincides with horizontal axis
of the graph). These results suggest that
a control effort in the range of 200 to 400
man days per annum would be required
to keep the barnyard grass invasion under
control in this region.

In the third case study simulation (Fig-
ure 4c) with an r parameter of 0.80 (where
it takes 15 years to reach 95% infestation
levelina1km?area starting witha 0.1% in-
festation), the whole region reaches 100%
infestation by year 34 without any search
and control effort. With control effort, the
infestation curves are pushed to the right
thus slowing the weed population spread
rate in the region. With around 400 man
days per annum input in search and con-
trol effort it seems possible to maintain
near zero infestation level in the region
for the full 50 year period (coincides with
horizontal axis of the graph).

The fourth case study simulation (Fig-
ure 4d) shows that with the r parameter
increasing to 1.35, the time taken to reach
100% infestation in the region gets short-
ened for both with and without control
scenarios. As shown in the fifth simulation
(Figure 4e), with an r parameter of 2.38,
the full infestation is reached by year 20
without a search and control effort. None
of the search and control scenarios evalu-
ated would be adequate in suppressing
weed spread, thus requiring a much high-
er level of search and control effort. Finally
as shown in Figure 4f, with a very high r
value of 9.19 (where it takes only 4 years to
reach 95% infestation level in a 1 km? area),



it takes only 12-13 years for the particular
weed to spread into the entire region of
10000 km?, regardless of the search and
control scenarios evaluated.

Conclusion

We described a spatially explicit large re-
gional scale spread modelling approach
and presented an application of the model
to awnless barnyard grass spread in north-
ern New South Wales. This model could
be applied to large area cropping systems
when a single grid cell can be equivalent to
the size of an individual farm and where

.

Infestation level
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long distance weed spread can occur due
to vehicles, farm machinery, weather and
animals. The model has modest data re-
quirements (for a spatial simulation mod-
el) in that it concentrates on simulating
population growth, dispersal processes
and mortality (including search and con-
trol) and ignores the environmental and
biotic heterogeneity of the receiving envi-
ronment. We have incorporated this into a
broader bioeconomic framework to evalu-
ate optimal policy responses to new weed
incursions from an economic perspective
(Jayasuriya and Jones 2008, Jayasuriya et

L FTT TITT

v

30 40

Time (years)

Figure 3. Weed spread without any control under different r values (—) 0.80,

(--)1.35,(---) 2.38, (---) 9.19.

al. 2008a). This bioeconomic application
clearly shows that there are significant
benefits to be achieved by controlling
highly invasive weeds when initial infes-
tations are at a low level. The cost of weed
control also increases with invasiveness,
but the magnitude of this is smaller com-
pared to the increased benefits received.
As a result the increase in the benefit-cost
ratio is large under a highly invasive weed
infestation control scenario. Even when an
invasion cannot be eradicated due to its
high invasiveness or budget constraints,
it still pays to maintain invasions at lower
level. This is in line with the work by Sha-
rov and Liebhold (1998) and Cacho (2004)
which showed that slowing population
spread is a viable strategy of invasion
control while the optimal strategy changes
from eradication to slowing the spread to
finally doing nothing.
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